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Abstract. We present a flexible and efficient toolchain to symbolically solve (standard) Ra-
bin games, fair-adversarial Rabin games, and 21/2-player Rabin games. To our best knowledge,
our tools are the first ones to be able to solve these problems. Furthermore, using the flexible
game solvers as back-end, we implement a tool for computing correct-by-construction con-
trollers for stochastic dynamical systems under LTL specifications. Our implementations use
the recent theoretical result that all of these games can be solved using the same symbolic
fixpoint algorithm but utilizing different, domain specific calculations of the involved prede-
cessor operators. The main feature of our toolchain is the utilization of two programming
abstractions: one to separate the symbolic fixpoint computations from the predecessor cal-
culations, and another one to allow the integration of different BDD libraries as back-ends.
In particular, we employ a multi-threaded execution of the fixpoint algorithm by using the
multi-threaded BDD library Sylvan, which leads to enormous computational savings.

1 Introduction

Piterman and Pnueli [16] derived the currently best known symbolic algorithm for solving two-
player Rabin games over finite graphs with a theoretical complexity of O(nk+1k!) in time and
space, where n is the number of states and k is the number of pairs in the winning condition. This
work did not provide an implementation. In a series of papers [3, 4, 14, 15], Mallik et. al. showed
that this symbolic algorithm can be extended to solve different automated design questions for
reactive hardware, software, and cyber-physical systems under fair or stochastic uncertainties. The
main contribution of their work is to show that these extensions only require a very mild syntactic
change of the Piterman-Pnueli fixed-point algorithm (with very little effect on its overall complexity)
and domain-specific realizations of two types of predecessor operators used therein.

Using this insight, we present a toolchain for efficient symbolic solution of different extensions of
Rabin games. We have created three inter-connected libraries for solving different parts of the prob-
lem from different levels of abstraction. The first library, called Genie, offers a set of virtual classes
to implement the fixpoint algorithm—abstractly, leaving open (i.e. virtual) the predecessor compu-
tation. Alongside, we created two other libraries, called FairSyn and Mascot-SDS, where FairSyn

solves fair-adversarial [4] and 21/2-player Rabin games [3], while Mascot-SDS solves abstraction-
based control problems [14, 15]. FairSyn and Mascot-SDS use the optimized fixpoint computation
provided by Genie, with domain specific implementations of the predecessor operations.

The flexibility of our toolchain comes from two different programming abstractions in Genie.
Firstly, Genie offers multiple high-level optimizations for solving the Rabin fixpoint, such as parallel



execution (requires a thread-safe BDD library like Sylvan) and an acceleration technique [13], while
abstracting away from the low-level implementations of the predecessor functions. As a result, any
synthesis problem using the core Rabin fixpoint of Genie can use the optimizations without spending
any extra implementation effort. We used these optimizations from FairSyn and Mascot-SDS, and
achieved remarkable computational savings. Secondly, Genie offers easy portability of codes from
one BDD library to another, which is important as different BDD libraries have different pros and
cons, and the choice of the best library depends on the needs. We empirically showed how switching
between the two BDD libraries Sylvan and CUDD impacts the performance of FairSyn and CUDD:
overall, the Sylvan-based experiments were significantly faster, whereas the CUDD-based experiments
consumed considerably lower amount of memory. Using the combined power of multi-threaded BDD
operations using Sylvan and the optimizations offered by Genie, Mascot-SDS was between one and
three orders of magnitude faster than the state-of-the-art tool in our experiments.

Comparison with Existing Tools: We are not aware of any available tool to directly solve (nor-
mal or stochastic) Rabin games symbolically. However, it is well-known how to translate stochastic
Rabin games into (standard) Rabin games [5], and Rabin games into parity games, for which effi-
cient solvers exist, e.g. oink [9]. Yet, efficient solutions of stochastic Rabin games via parity games
are difficult to obtain, because: (i) the translation from a stochastic Rabin game to a Rabin game
involves a quadratic blow-up, and the translation from a Rabin game to a parity game results in
an exponential blow-up in the size of the game, (ii) symbolic fixpoint computations become cum-
bersome very fast for parity games, as the number of vertices and/or colors in the game graph
increases, leading to high computation times in practice, and (iii) the only known algorithms ca-
pable of handling fair and stochastic uncertainties efficiently are all symbolic in nature, while most
of the efficient parity game solvers are non-symbolic. Additionally, unlike the Rabin fixpoint, the
nesting of the parity fixpoint does not enable parallel execution.

While it is well known that for normal parity games, computational tractability can be achieved
by different non-symbolic algorithms, such as Zielonka’s algorithm [21], tangle learning [8] or
strategy-improvement [18], implemented in oink[9], it is currently unclear if and how these al-
gorithms allow for the efficient handling of fair or stochastic uncertainties. We are therefore unable
to compare our toolchain to the translational workflow via parity games in a fair manner.

In the area of temporal logic control of stochastic dynamical systems, Mascot-SDS has two
powerful features: (a) it can handle synthesis for the rich class of omega-regular (infinite-horizon)
specifications, and (b) it provides both over- and under-approximations of the solution, thus enabling
a quantitative refinement loop for improving the precision of the approximation. The features of
Mascot-SDS is compared with other tools in the stochastic category of the recent ARCH competition
(see the report [1] for the list of participating tools). As concluded in the report of the competition,
other state-of-the-art tools in stochastic category are either limited to a fragment of ω-regular
specifications or do not provide any indication of the quality of the involved approximations. The
only tool [10] that supports ω-regular specifications uses a different alternate non-symbolic approach,
against which Mascot-SDS fares significantly well in our experiments (see Sec. 4.2). Even if we
leave stochasticity aside, our tool implements a new and orthogonal heuristic for multi-threaded
computation of Rabin fixpoints, which is not considered by other controller synthesis tools [11].

2 Theoretical Background

We briefly state the synthesis problems our toolchain is solving. We follow the same (standard)
notation for two-player game graphs, winning regions, strategies and µ-calculus formulas, as in [4].



2.1 Solving Rabin Games Symbolically

Given a game graph G = (V, V0, V1, E), a Rabin game is specified using a set of Rabin pairs R =
{(Q1, R1, ) , . . . , (Qk, Rk)}, with Qi, Ri ⊆ V for every i ∈ [1; k], and ϕ :=

∨
i∈[1;k](♦�¬Ri ∧�♦Qi)

being the Rabin acceptance condition. Piterman and Pnueli [16] showed that the winning region
of a Rabin game can be computed using the µ-calculus expression given in (2), where the set
transformers Cpre : 2V → 2V and Apre : 2V × 2V → 2V are defined for every S, T ⊆ V as:

Cpre(S) := {v ∈ V0 | ∃v′ ∈ S . (v, v′) ∈ E} ∪ {v ∈ V1 | ∀v′ ∈ V . (v, v′) ∈ E =⇒ v′ ∈ S} , (1a)

Apre(S, T ) :=Cpre(T ). (1b)

The symbolic fixpoint algorithm for solving Rabin games with R = {(Q1, R1), . . . , (Qk, Rk)} and K = [1; k]:

νYp0 .µXp0 .
⋃

p1∈K

νYp1 .µXp1 .
⋃

p2∈K\{p1}

νYp2 .µXp2 . . . .
⋃

pk∈K\{p1,...,pk−1}
νYpk .µXpk .

[
k⋃

j=0

Cpj

]
, (2)

where
Cpj :=

(⋂j
i=0Rpi

)
∩
[(
Qpj ∩ Cpre(Ypj )

)
∪
(
Apre(Ypj , Xpj )

)]
,

and the definitions of Cpre and Apre are problem specific.

Fair-Adversarial Rabin Games. A Rabin game is called fair-adversarial when there is an
additional fairness assumption on a set of edges originating from Player 1 vertices in G. Let
E` ⊆ E∩(V1×V ) be a given set of edges, called the live edges. Given E` and a Rabin winning condi-
tion ϕ, we say that Player 0 wins the fair-adversarial Rabin game from a vertex v if Player 0 wins the

(normal) game for the modified winning condition ϕ` :=
(∧

e=(v,v′)∈E`(�♦v =⇒ �♦e)
)

=⇒ ϕ.

Based on the results of Banerjee et al. [4], fair-adversarial Rabin games can be solved via (2), by
defining for every S, T ⊆ V

Cpre(S) := {v ∈ V0 | ∃v′ ∈ S . (v, v′) ∈ E} ∪ {v ∈ V1 | ∀v′ ∈ V . (v, v′) ∈ E =⇒ v′ ∈ S} , (3a)

Apre(S, T ) := Cpre(T ) ∪
{
v ∈ Cpre(S) ∩ V1 | ∃v′ ∈ T . (v, v′) ∈ E`

}
. (3b)

We see that (3) coincides with (1) if E` is empty.

21/2-Player Rabin Games. A 21/2-player game is played on a game graph (V, V0, V1, Vr, E), and
the only difference from a 2-player game graph is the additional set of vertices Vr which are called
the random vertices. The sets V1, V2, and Vr partition V . Based on the results of [3] 21/2-Player
rabin games can be solved via (2) by defining for all S, T ⊆ V

Cpre(S) := {v ∈ V0 | ∃v′ ∈ S . (v, v′) ∈ E} ∪ {v ∈ V1 ∪ Vr | ∀v′ ∈ V . (v, v′) ∈ E ⇒ v′ ∈ S} ,
(4a)

Apre(S, T ) := Cpre(T ) ∪ {v ∈ Cpre(S) ∩ Vr | ∃v′ ∈ T . (v, v′) ∈ E} . (4b)

2.2 Computing Symbolic Controllers for Stochastic Dynamical Systems

A discrete-time stochastic dynamical system S is represented using a tuple (X,U,W, f), where
X ⊆ Rn is a continuous state space, U is a finite set of control inputs, W ⊂ Rn is a bounded set



of disturbances, and f : X × U → X is the nominal dynamics. If xk ∈ X and uk ∈ U are the state
and control input of S at some time k ∈ N, then the state at the next time step is given by:

xk+1 = f(xk, uk) + wk, (5)

where wk is the disturbance at time k which is sampled from W using some (possibly unknown)
distribution. Without loss of generality we assume that W is centered around the origin, which can
be easily achieved by shifting f if needed. A path of S originating at x0 ∈ X is an infinite sequence
of states x0x1 . . . for a given infinite sequence of control inputs u0u1 . . ., such that (5) is satisfied.

Let ϕ be a given Rabin specification—called the control objective—defined using a finite set of
predicates over X. For every controller C : X → U , the domain of C, written Dom(C), is the set
of states from where the property ϕ can be satisfied with probability 1. For a fixed ϕ, a controller
Ĉ is called optimal if Dom(Ĉ) contains the domain of every other controller C. The problem of
computing such an optimal controller for the system in (5) is in general undecidable. Following [14],
we compute an approximate solution instead.

This aproximate solution is optained by a discretization of the state space. For this, we assume
that the state space X is a closed and bounded subset of the n-dimensional Euclidean space Rn for
some n > 0, and consider a grid-based discretization X̂ of X, where X̂ = {[[a, b)) | a, b ∈ Rn = X}.
One of the key ingredients of our abstraction process is a function f̂ providing hyper-rectangular
over-approximation of the one-step reachable set of the nominal dynamics f of the system S:
for every grid element x̂ ∈ X̂, we have f̂(x̂, u) = [[a′, b′)) ⊇ {x′ ∈ X | ∃x ∈ x̂ . x′ = f(x, u)}. The

function f̂ is known to be available for a wide class of commonly used forms of the function f , and
in our implementation we assumed that f is mixed-monotone and f̂ is the so-called decomposition
function (see standard literature for details [7]).

Given the over-approximation of the nominal dynamics obtained through f̂ , we define, respec-
tively, the over- and the under-approximation of the perturbed dynamics as g(x̂, u) := W ⊕ f̂(x̂, u)

and g(x̂, u) := W 	 (−f̂(x̂, u)), where ⊕ and 	 respectively denote the Minkowski sum and the

Minkowski difference. Next, we transfer g and g to the abstract state space X̂ to obtain, respec-

tively, the over- and the under-approximation in terms of the abstract transition function5, i.e.,

h(x̂, u) :=
{
x̂′ ∈ X̂ | g(x̂, u) ∩ x̂′ 6= ∅

}
and h(x̂, u) :=

{
x̂′ ∈ X̂ | g(x̂, u) ∩ x̂′ 6= ∅

}
. With h and h

available, it was shown by Majumdar et al. [15] that the over-approximation of the optimal con-
troller can be solved by using the fixpoint algorithm in (2), where the predecessor operators are

defined for every S, T ⊆ X̂ as

Cpre(S) :=
{
x̂ ∈ X̂ | ∃u ∈ U . h(x̂, u) ⊆ S

}
(6a)

Apre(S, T ) :=
{
x̂ ∈ X̂ | ∃u ∈ U . h(x̂, u) ⊆ S ∧ h(x̂, u) ∩ T 6= ∅

}
. (6b)

3 Implementation Details

We develop three interconnected tools, Genie, FairSyn, and Mascot-SDS, which work in close har-
mony to implement efficient solvers for the solution of (2) with pre-operators defined via (3), (4)
and (6), respectively. The tools use binary decision diagrams (BDD) to symbolically manipulate

5 Here we assume that f̂(x̂, u) ⊆ X; otherwise we need to take some extra steps. Details can be found in
the work by Majumdar et al. [15].
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(Virtual BDD class)BaseFixedPoint

(Virtual fixpoint class) RabinAutomaton
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Arena

FixedPoint

Cpre and Apre
defined as in (3)
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SymbolicSet SymbolicModel

FixedPoint

Cpre and Apre
defined as in (6)

Fig. 1: A schematic diagram of interaction among the three tools. Each block represents one class
in the respective tool, and an arrow from class A to class B denotes that B depends on A. The
dependency within each tool is shown using solid arrows, while the dependencies of Mascot-SDS

and FairSyn on Genie is shown using dashed arrows.

sets of vertices/states of the underlying system, and to manage the BDDs, we offer the flexibility to
choose between two of the well-known existing BDD libraries, namely CUDD [19] and Sylvan [20].
The two libraries have their own merits: while CUDD has significantly lower memory footprint,
Sylvan offers superior computation speed through multi-threaded BDD operations. Thus, the op-
timal choice of the library depends on the size of the problem, the computational time limit, and
the memory budget, and through our implementation it is possible to choose one or the other by,
in some cases, changing only a single single line of code and, in the other cases, changing the value
of just one flag. Moreover, we expect that integrating other BDD libraries having the same basic
BDD operations in our tools will be easy and seamless—thanks to the programming abstraction
offered by Genie. Such extensions will possibly bring more diverse set of computational strengths
for solving the fundamental synthesis problems that we address.

The tools are primarily written using C++, with some small python scripts implementing parts
of visualizations of outputs. The main classes of the three tools and their interactions are depicted
in Fig. 1. We briefly describe the core functionalities of the tools in the following.

3.1 Genie

Genie implements the fixpoint algorithm (2), while abstracting away from the low-level implemen-
tation details of the Cpre and Apre operators. Within Genie, there is a second layer of abstraction
in the implementation of the fixpoint in the BaseFixedPoint class, where we abstract away from
the low-level handling of the BDDs. This abstraction is accomplished using the class BaseUBDD, a
virtual class offering a number of basic BDD operations, whose implementations are in the off-the-
shelf BDD library being used. The connection between BaseUBDD and the BDD library is achieved
through an interface. Currently, we have built interfaces for CUDD and Sylvan, in the classes called
CuddUBDD and SylvanUBDD, respectively. The flexibility to choose between CuddUBDD and Syl-
vanUBDD is illustrated in the small example in Fig. 2. Support for additional BDD libraries can
be easily built by creating new interfaces.



Cudd mgr;

BDD x = mgr.var();

BDD y = mgr.var();

size_t s = mgr.ReadSize();

cout << "#Nodes = " << s;

(a) Using CUDD.

size_t s = 0;

Bdd x = Bdd::bddVar(0);

s++;

Bdd y = Bdd::bddVar(1);

s++;

cout << "#Nodes = " << s;

(b) Using Sylvan.

// typedef Genie::CuddUBDD UBDD;

typedef Genie::SylvanUBDD UBDD;

UBDD base;

UBDD x = base.var();

UBDD y = base.var();

size_t s = base.nodeSize();

cout << "#Nodes = " << s;

(c) Using Genie as a wrapper.
Fig. 2: Programs written with Genie are easily portable to other BDD libraries: Three example
code snippets for creating two BDD variables and then printing the total number of BDD nodes
in existence using CUDD (left), Sylvan (middle) and Genie (right). Hard-coded use of specific BDD
libraries (left and middle) is not easily portable. Using Genie as a wrapper BDD library (left) allows
changing BDD libraries by simply commenting/uncommenting the respective “typedef” line.

In addition to the flexibility of using different BDD libraries, Genie supports two different
optimizations for the efficient iterative computation of the Rabin fixpoint in (2)—independently
from the actual implementations of the Apre and Cpre operators. The first optimization is a multi-
threaded computation of the Rabin fixpoint, exploiting the fixpoint’s inherent parallel structure due
to the independence among different sequences of (p1, p2, . . .) used to compute

⋃k
j=0 Cpj

. The second
optimization is an accelerated computation of the Rabin fixpoint, achieved through bookkeeping
of intermediate values of the BDD variables. The core of the acceleration procedure for general
µ-calculus fixpoints was proposed by Long et al. [13], and the details specific to the fixpoint in (2)
can be found in the paper by Banerjee et al. [4].

The Rabin fixpoint is implemented (virtually) in the class Genie::BaseFixedPoint<UBDD>,
where UBDD is a template parameter whose value can be either CuddUBDD or SylvanUBDD depending
on whether we are using CUDD or Sylvan. To solve the Rabin fixpoint using Genie, the user needs to
first define a class, call it FixedPoint<UBDD>, that is derived from Genie::BaseFixedPoint<UBDD>

and concretely defines the functions (the predecessors) Apre and Cpre on an appropriate Rabin
game structure of choice. After this, the fixpoint can be solved using the following code:

// typedef Genie::CuddUBDD UBDD; // for CUDD

typedef Genie::SylvanUBDD UBDD; // for Sylvan

UBDD base;

FixedPoint<UBDD> fp(...); // construct a FixedPoint object, with appropriate parameters

bool accl = true; // turn acceleration on or off

size_t M = 10; // acceleration parameter (cache size)

UBDD initial_seed = base.one(); // initial over-approximation of winning region (for

speedup, if unavailable then choose base.one() which is everything)

int verbose = 0; // verbosity

// UBDD result = fp.Rabin(accl, M, initial_seed, verbose); // for sequential solving

UBDD result = fp.Rabin(accl, M, initial_seed, verbose, Genie::ParallelRabinRecurse); //

for parallel fixpoint solving

Genie also offers an auxiliary virtual class called RabinAutomaton for modeling Rabin automata,
which turns out to be helpful when we specify winning conditions and control objectives, respec-
tively, using FairSyn and Mascot-SDS.



3.2 FairSyn

The core of FairSyn is written as a header-only library, which offers the infrastructure to solve (2)
with pre-operators defined via (3) and (4). The main component of FairSyn is the class FixedPoint,
which derives from the class BaseFixedPoint from Genie, and implements the concrete definitions
of Cpre and Apre in (3) and (4).

How to use: For computing the winning region and the winning strategy in a fair-adversarial
Rabin game (resp. a 21/2-player Rabin game) using FairSyn, one needs to write a program to
create the game as a FixedPoint object. One possible way of constructing a FixedPoint object
is through a synchronous product of a game graph (an object of class Arena) and a specification
Rabin automaton (an object of class RabinAutomaton) with an input alphabet of sets of nodes of
the Arena object. Following is a snippet:

// typedef Genie::CuddUBDD UBDD; // use this for CUDD

typedef Genie::SylvanUBDD UBDD; // use this for Sylvan

UBDD base;

...

Arena<UBDD> A(base, vars, nodes, sys_nodes, env_nodes, edges, live_edges); // the game

graph

RabinAutomaton<UBDD> R(base, vars, inp_alphabet, filename); // the specification automaton

FixedPoint<UBDD> Fp(base, "under", A, R); // the synchronous product

// UBDD strategy = Fp.Rabin(true, 20, Fp.nodes_, 0); // sequential fixpoint solver

UBDD strategy = Fp.Rabin(true, 20, Fp.nodes_, 0, Genie::ParallelRabinRecurse); // parallel

fixpoint solver

...

where vars is a (possibly initially empty) set of integers which will contain the set of newly created
BDD variables, nodes, sys nodes, and env nodes are, respectively, vectors of indices of various
types of vertices, edges and live edges are, respectively, vectors of the respective types of edges,
inp alphabet is a std::map object that maps input symbols of the Rabin automaton to the re-
spective BDDs representing sets of nodes in the Arena, and filename is the name of the file in
which the Rabin automaton is stored (using the standard HOA format [2]). The game is solved by
calling Fp.Rabin, a member function of the Genie::BaseFixedPoint class (see Sec. 3.1).

3.3 Mascot-SDS

The core of Mascot-SDS is also written as a header-only library. It is built on top of the well-known
tool called SCOTS [17], with several classes of Mascot-SDS still retaining their original identities from
SCOTS, owing to the close similarity of the basic uniform grid-based abstraction used in both tools.
The main difference between the two tools is that Mascot-SDS synthesizes controllers for stochastic
systems, while SCOTS synthesizes controllers for only non-stochastic systems.

The two main classes of Mascot-SDS are called SymbolicSet and SymbolicModel, which re-
spectively model the abstract spaces obtained through uniform grid-based discretizations (like X̂ in
Sec. 2.2) and the abstract transition relations (h and h in Sec. 2.2). The abstract transition relations
are computed using an auxiliary class called SymbolicModelMonotonic (not shown in Fig. 1). Notice
that we offer the flexibility to use both CUDD and Sylvan while creating objects from SymbolicSet

and SymbolicModel. A FixedPoint object is a child of the class BaseFixedPoint from Genie, which
is created by taking a synchronous product between a SymbolicModel object and a RabinAutomaton



object specifying the control objective given as user input. The class FixedPoint implements the
concrete definitions of the Cpre and Apre operator according to (6).

How to use: To make the basic usage easier, we have written a pair of tools called Synthesize

and Simulate using the library of Mascot-SDS. Synthesize synthesizes controllers for stochastic
dynamical systems whose nominal dynamics is mixed-monotone, and Simulate visualizes simulated
closed-loop trajectories using the synthesized controller. The inputs to Synthesize include the
dynamic model of the system and the control objective; the latter can be specified either in LTL or
using a Rabin automaton. To use Synthesize, simply use the following syntax:

<path-to-Synthesize binary>/Synthesize <path-to-input-file>/<input.cfg> <sylvan/cudd flag>

where the <input.cfg> is an input configuration file containing all the inputs, and the <sylvan/cudd
flag> is either 1 or 0 depending on whether the parallel version using Sylvan is to be run or the
sequential version using CUDD.

Some of the main ingredients in the input.cfg file are: (a) the description of the dynamical sys-
tem’s variable spaces (like state space, input space, etc.) including their discretization parameters,
(b) the file where the decomposition function of the nominal dynamics of the system is stored, (c)
the absolute value of maximum disturbance, and (d) the specification either as an LTL formula or as
the filename where a Rabin automaton is stored (in HOA format [2]). The decomposition function
is required to be given as a C-compatible header file so that Synthesize can link to (use) this func-
tion at runtime (see the mascot-sds/examples/ directory for examples). When the specification is
given as a Rabin automaton (over a labeling alphabet of the system states), the automaton needs to
be stored in a file in the HOA format. Alternatively, an LTL specification can be given, along with
a mapping between the atomic predicates and the states of the system. In that case Synthesize

uses Owl [12] to convert the LTL specification to a Rabin automaton.
The output of Synthesize is a folder called data that contains pieces of the controller encoded

in BDDs and stored in binary files as well as various metadata information stored in text files. These
files can be processed by Simulate to visualize simulated closed-loop trajectories of the system.
The usage of Simulate is similar to Synthesize:

<path-to-Simulate binary>/Simulate <path-to-input-file>/<input.cfg> <sylvan/cudd flag>

where the input.cfg file should, in this case, contain information that are required to simulate the
closed-loop, like for how many time steps the simulation should run, the python script that will
plot the state space predicates (see the examples), etc.

4 Examples

We present experimental results, showcasing practical usability of our tools as well as comparing
performances with the state-of-the-art. All the experiments were run on a computer equipped with
Intel Xeon E7-8857 v2 48 core processor and 1.5 TB RAM.

4.1 Synthesizing Code-Aware Resource Mangers of OS using FairSyn

We consider a case study introduced by Chatterjee et al. [6]. It considers the problem of synthesizing
a code-aware resource manager for a network protocol, i.e., multi-threaded program running on a
single CPU. The task of the resource manager is to grant different threads accesses to different



shared synchronization resources (mutexes and counting semaphores). The specification is deadlock
freedom across all threads at all time while assuming a fair scheduler (scheduling every thread always
eventually) and fair progress in every thread (i.e., taking every existing execution branch always
eventually). By making the resource-manager code aware, we can avoid deadlocks by utilizing
its knowledge about the require and release characteristics of all threads for different resources.
Chatterjee et al. [6] showed that this problem can be reduced to the problem of computing the
winning strategy in a certain 21/2-player game. We refer to [4] for more details. In Table 1, we
summarize the computational times for both CUDD and Sylvan-based implementations of FairSyn.

Broadcast
Queue

Capacity

Output
Queue

Capacity

Number of
Vertices

Number of
Transitions

Number of
Live edges

Number
of BDD
variables

Computation Time
(seconds)

CUDD Sylvan

1 1 5,307,840 10,135,300 5,124,100 25 255.33 11.40
2 1 21,231,400 40,541,200 20,496,400 27 957.99 29.20
3 1 21,414,100 42,080,300 21,265,900 27 903.01 31.13
1 2 21,340,800 40,879,100 20,834,300 27 1308.09 39.57
1 3 21,559,400 42,756,100 21,772,800 27 1249.37 41.76
2 2 85,363,200 163,516,000 83,337,200 29 5127.93 111.62
3 2 86,061,400 169,673,000 86,415,400 29 5104.20 114.30
2 3 86,237,400 171,024,000 87,091,200 29 5644.09 118.12
3 3 86,870,100 177,181,000 90,169,300 29 6156.57 137.56

Table 1: Performance of FairSyn on the code-aware resource management benchmark experiment.

4.2 Synthesizing Controllers for Stochastic Dynamical Systems using Mascot-SDS

We use Mascot-SDS to synthesize controllers for two different applications.

A Bistable Switch. First, we compare our tool’s performance against the state-of-the-art tool
called StochasticSynthesis (abbr. SS) [10] on a benchmark example that was proposed by the authors
of SS. In this example, there is a 2-dimensional nonlinear bistable switch that is perturbed with
bounded stochastic noise. There are two synthesis problems with two different control objectives:
one, a safety objective, and, two, a Rabin objective with two Rabin pairs. The model of the system
and the control objectives can be found in the original paper [10].

The tool SS uses graph theoretic techniques to solve the controller synthesis problem, which
is an alternative approach that is substantially different from our symbolic fixpoint based tech-
nique. In Table 2, we summarize the performance of Mascot-SDS powered by CUDD and Sylvan,
alongside the performance of SS. Both Mascot-SDS and SS compute controllers whose domains
under-approximate the optimal controller domains. The second column of Table 2 shows a mea-
sure of the approximation error. For every comparable approximation error bound, both versions
of Mascot-SDS significantly outperformed SS, both time and memory-wise. In fact, Mascot-SDS
with Sylvan was at least an order of magnitude faster in all instances. This is particularly aston-
ishing, since SS uses a sophisticated lazy abstraction refinement technique, whereas Mascot-SDS

uses a plain uniform abstraction which is typically computationally expensive. This shows the im-
mense potential of our toolchain; we plan to extend Mascot-SDS with lazy gridding, an orthogonal



optimization, in a future releas to make further computational savings. For Mascot-SDS itself, as
expected, Sylvan was significantly faster than CUDD. On the other hand, though Sylvan used less
memory than CUDD in the simpler setups (the ones with more error), the memory requirement of
Sylvan quickly grew and surpassed that of CUDD for the more complicated setup.

Spec.
upper bound

on
approx. error

Total running time Peak memory footprint
Mascot-SDS

SS [10]
Mascot-SDS

SS [10]
CUDD Sylvan CUDD Sylvan

ϕ1

(1
Rabin
pair)

20 %–30 % 11 s <2 s 27 s 351 MiB 79 MiB 223 MiB
10 %–20 % 9 s 2 s 43 s 351 MiB 105 MiB 290 MiB
5 %–10 % 14 s 4 s 1 h 49 min 405 MiB 251 MiB 25 GiB
0 %–5 % 48 s 10 s TO 553 MiB 759 MiB TO

ϕ2

(2
Rabin
pairs)

20 %–30 % 21 s <2 s 21 s 324 MiB 40 MiB 202 MiB
10 %–20 % 26 s 2 s 25 s 371 MiB 80 MiB 203 MiB
5 %–10 % 37 s 4 s 1 min 17 s 436 MiB 242 MiB 490 MiB
0 %–5 % 2 min 24 s 13 s TO 573 MiB 761 MiB TO

Table 2: Performance comparison between Mascot-SDS and StochasticSynthesis (abbreviated as SS)
[10] on the bistable switch. Col. 1 shows the specifications considered and the respective numbers
of Rabin pairs, Col. 2 shows the approximation error ranges (smaller error means more intense
computation), Col. 3, 4, and 5 compare the total running times and Col. 6, 7, and 8 compare
the peak memory footprint (as measured using the “time” command) for Mascot-SDS with CUDD,
Mascot-SDS with Sylvan, and SS respectively. “TO” stands for timeout (5 h of cutoff time).

Table-Serving Robot. We consider the controller synthesis problem for a table-serving robot
that needs to satisfy the following specification: �♦kitchen ∧�¬obtsacle ∧ (�♦request ↔ �♦table),
where table, kitchen, obstacle, and request are predicates over the state space. The robot itself is
modeled as the discrete-time abstraction of the standard 3-dimensional Dubins vehicle [14] with an
additional (i.e., 4th) dimension that records if a request , which is controlled by the environment, is
pending. In Table 3, we summarize the computational resources, and, in Fig. 3, we show a simulated
closed-loop trajectory that was plotted using our tool Simulate. We observe that Sylvan was much
faster, but CUDD consumed much less memory.

CUDD Sylvan

Comp. time 1 h 3 min 2 min 55 s
Peak memory 673 MiB 1.1 GiB

Table 3: Performance of Mascot-SDS with CUDD

and Sylvan for the table-serving robot experi-
ment.
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Fig. 3: Simulated closed-loop trajectory of the
robot for 100 time steps with kitchen (green),
table (blue), and obstacle (black).
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